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            Article  

Complementary Time-Dependent Coordinate Transformation 
 

Alexandru C. V. Ceapa* 
 

ABSTRACT 
Abstract coordinate systems at abolsute rest are discussed. Time-dependent coordinate 

transformations that are complementary to those already known as spatial translations and rotations 

are described here. Then, it is shown that standard Lorentz transformation is a complementary time-

dependent coordinate transformation. 

 

Key Words: complementary, time-dependent, coordinate transformation, abstract coordinates, 

absolute rest, inertial coordinate system. 

 

6. ABSTRACT COORDINATE SYSTEMS AT ABSOLUTE REST 

We give evidence for abstract coordinate systems at absolute rest associated to inertial coordinate 

systems called “at rest” [1] and abstract coordinate systems at absolute rest that professional inertial 

observers (professionals) associate to their own inertial coordinate systems. Professionals are 

common inertial observers (uselessly assumed till now to be innocent) a priori trained to investigate 

graphically both seen and unseen relative motions. 

 6.1. Abstract Coordinate Systems at Absolute Rest Associated to Coordinate Systems “at Rest” 

Consider the diagrams in Fig. 1, with arrows temporarily ignored.  In the first diagram, the coordinate 

system k is moving with constant speed  along the positive common  axis relative to a 

hypothetical coordinate system at absolute rest K.  In the second diagram, k moves with the same 

speed relative to K1, but k and K1 are carried by an inertial space of speed .  The coordinate system 

k coincided with both K and K1 at .  P( ) is a fixed point in k.  At time  the second diagram 

differs from the first one in that everything is shifted right by a distance .  The Galileo 

transformation 

 

         (1) 

 

is predicted by both diagrams.  This fact ‘entitled’ observers to name their inertial coordinate 

systems “at rest”, and to treat them as coordinate systems at absolute rest.  

 

Consider further the same diagrams with arrows drawn.  They stand for physical signals tracing 

radius vectors of geometrical points moving with respect to observer.  Among all possible physical 

signals, we here, and in subsequent diagrams, select light signals.  We do it to pregnantly emphasize 

the deep connection of our results with Einstein’s special relativity theory.  The generality of all the 

obtained formulas is assured by changing c to v within them, where v stands for the speed of 

whichever signal. 
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Figure 1. 

Let the arrows on Fig. 1 stand for the light signal tracing the radius vector of P( ).  At time , this 

signal and the origin of k leave the origin of K, K1, respectively, moving along the  axes with 

speeds .  At time , they reach, respectively, P and O' in the first diagram, and we get Eq. (1) with 

.  Also at time , the path of the signal in the second diagram is , but both the origin of K1 and 

P are shifted right to O(t) and P( ) for the distance .  At time  the light signal will 

reach P( ), but in the time , P( ) moved from P( ) to P( ) in the diagram of Fig. 2. 
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Figure 2. 

At time , the light signal will reach P( ), while k, K1 and P( ) moved further 

to right by , and , respectively.  So that, the time , at which k and K1 will 

reach positions denoted respectively by k( ) and K1( ), and the light signal P( ) at P( ), tracing 

its radius vector relative to O, is given by 

 

 
 

where the sum of an infinite geometric series of common ratio  was taken into account.  

At time , the radius vectors of P( ) and of the origin of k, respectively, are located at 

 

 
 

and 

 

 

 

So  reduces to Eq. (1) by removing the line segments OO( )  and 

 covered by the light signal and the origin of k, in accord with the 

second diagram in Fig. 1.  The third diagram in Fig. 1 follows.  By that the radius vector of the 
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geometrical point P( ) is traced by the signal in time t, this diagram associates the ‘abstract’ 

coordinate system at absolute rest K to the observer’s inertial coordinate system K1. 

 

Therefore, the very graphical and mathematical description of the uniform rectilinear motion of any 

object relative to an inertial observer is done with respect to the coordinate system at absolute rest 

associated to his inertial coordinate system.  The ‘relative’ speed appears to be an absolute quantity 

(that is one defined with respect to a coordinate system at absolute rest). 

  6.1.1. The ‘Relativistic’ Law of Addition of Parallel Speeds 

Consider now the diagrams in Fig. 3.  The coordinate system at absolute rest K is that above 

associated to K1.  The kA, k and K coincide at .  Just at , kA, k and a light signal, tracing the 

radius vector of P fixed in k, leave the origin O of K.  They move uniformly along the common  

axis with speeds  and , respectively.  At time , their origins and the tip of the signal reach, 

respectively, the points O'A( ), O'( ) and Q( ) in the upper diagram.  By diagrams like the last two 

in Fig. 1, with K1, K changed to kA, KA, we turn the motion of k relative to kA to one relative to the 

coordinate system at absolute rest KA associated to the inertial kA.  To this end, the light signal and 

the origin of k must continue their motion an additional time , until reaching P and 

O'[ ], respectively.     
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Figure 3. 

Since O’AP was traveled by the signal in time , the bottom diagram in Fig. 1 is regained as the second 

one in Fig. 3, where O’( ), O’( ) stand for the origin of k relative to O’A at times , respectively.  For 

a speed  of k relative to KA, this diagram predicts the relationship  at the time 

 and, by simplification, the equation 

 

       (2) 

 

The speeds ,  in Eq. (2) are absolute quantities (as defined in Sect. 6.1).   defines the speed of 

motion of k with respect to the fixed point O’A.  All happens as if the origin of kA was at rest at O’A in 

the time t, and that of k moved at O'( ) with speed  in the time t’.   is a true speed: , and not 

w-ν, serves to calculate the kinetic energy of a body at rest in k, releasable with respect to kA.  It is 

this reason for which  given by Eq. (3) is used in the relativistic kinematics. 

 

Therefore, for c changed to v, the ‘relativistic’ law of addition of parallel speeds given by Eq. (2) is 

specific to any theory in which the radius vectors are traced by physical signals. 

 6.1.2.  Complementary Time-Dependent Coordinate Transformation for Geometrical Points 

Located on the Observer’s Direction of Motion: Particular Form 

 

Observe that the first diagram in Fig. 3 predicts for Q the set of equivalent equations 



Scientific GOD Journal | July 2010 | Vol. 1 | Issue 5 | pp. 323-333 
Ceapa, A. C. V.  Complementary Time-Dependent Coordinate Transformation 

ISSN: 2153-831X Scientific GOD Journal 

Published by  Scientific GOD Inc. 

    www.SciGOD.com 

 

326 

 

,        (3) 

 

Also observe that, for a geometrical point -the origin O’ of k- moving with the absolute speed w, the 

additional equation  assures the independence of Eqs. (3).  So Eqs. (3) define a coordinate 

transformation. According to Sec. 2, this is a complementary time-dependent coordinate 

transformation connecting coordinates -defined with respect to the coordinate systems at absolute 

rest K and KA- of geometrical points located on the observer’s direction of motion.  Since Eqs. (3) and 

the equations 

 

, , 

 

also predicted by the first diagram, give rise to the equations 

 

,  

 

predicted by the last diagram, the coordinate transformations of type (3) form a group. 

 6.2. Abstract Coordinate Systems at Absolute Rest Associated to Coordinate Systems of Inertial 

 Observers 

A professional at rest with respect to the origin of k in Fig. 1, can always associate 

coordinate systems at absolute rest (K, ) to, respectively, the inertial coordinate systems K1 and k 

by reflecting at point P( ) fixed in k, the light signal tracing its radius vector, as depicted in the 

diagrams in Fig. 4.  The first because, as a point of space, hence at absolute rest, the origin O’o of the 

signal defines the origin O of K.  The last in view of the equations 

ξ= c τvτ v τ

P( x ', ξ,x )O '

K
k

vx/c

P( x ')

x '

O '1O ,O ' 0 O '2Ξ

c t1
c t

 

Figure 4. 

,                (4) 

 

having as solutions 

  

,  t1=x’/(c-v).         (5) 

 

Thus defining 

 

,  ,                 (6) 

 

he obtaines equations , β=β
2
x’, and implicitly 

 

O’oO’2/2= c(t-t1)/2= vτ, .            (7) 

 

Since  is the abscissa of a point P fixed in k, it is constant.  The quantities  and  are also 

constants.  Therefore, the point O' of abscissa  is a fixed point in K.  Since  gives the position of P 

relative to O’, the last of Eqs. (7) defines O’ as the origin of a coordinate system at absolute rest  
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associated to the inertial coordinate system k.  As depicted in the second diagram in Fig. 4,  is 

parallel to k and K, having in common the  axis.  The radius vector of P relative to ,  is 

traced by a light signal in the time  of .  By Eqs. (5), (6) and (1), and adding equations , , 

he gets 

 

, , , ,    (8) 

 

where , which connect coordinates of P relative to the coordinate systems at 

absolute rest , K. 

 

7. GRAPHICAL ADDITION OF TRAVEL TIMES AS SCALAR QUANTITIES 

The parallelogram rule of addition of two vectors making the angle D with each other gives by the 

extended Pythagorean theorem 

 

t=(t1
2
+t2

2
+2t1t2cosα)

1/2
       (9) 

as the formula for adding travel times elapsed by light along such vectors.  Eq. (9) conflicts with the 

scalar feature of time, and must be abolished. 

To this end we first consider a sequence of collinear line segments OA1, A1A2,…, An-1An  in empty 

space, and denote 

OAn =OA1+A1A2+…+An-1An      (10) 

 

Because the time in which a light signal travels any line segment is the difference between the times 

indicated by synchronous clocks located at its endpoints at the arrival of that signal [in our case (O), 

 (A1), … ,  (An)], we always have 

 

 (OAn) =  (OA1)+  (A1A2)+…+  (An-1An)   (11) 

 

with  (OAn) = (An) - (O) = OAn/ , (OA1) = (A1) - (O) = OA1/ , (A1A2) = (A2) - (A1) = A1A2/ , 

…, (An-1An) = (An) - (An-1)=An-1An/ . 

 

When obtained dividing a geometrical equation like (10) by the speed of a physical signal (in 

particular that of light), Eq. (11) defines what we here call graphical addition of travel times as scalar 

quantities.  The derivation of Eq. (11) from Eq. (10) is basic in a theory manipulating physical signals, 

as the special relativity theory is. 
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The choice of collinear light signals in [1] has hidden the case of the collinear line segments which 

depend on travel times of non-collinear light signals, like those tracing the radius vectors OQ, O’Q in 

the diagram in Fig. 5, with k and K in Sec. 5 (Sect. 1.1).  The collinear line segments OO’, O’P and OP 

are covered respectively with speeds ,  and  by the origin of k and the projections onto 

the common  axis of the tips of the light signals tracing OQ, O’Q.  Therefore they depend on the 

travel times  and O’Q .  Evidently, this prevents us from getting a time equation like (11) by 

simply dividing equation OO'+O'P=OP by .  In order to get such an equation, we need to express OP, 

OO' and O'P in terms of the travel time of one and the same light signal.   This means that we need to 

relate them geometrically to the path of such a signal (O’P1 in Fig. 5).  We name time-axis the 

direction orthogonal to .  By applying the Pythagorean theorem to the right triangle OP1O', we have 

 

         (12) 

 

Laying O'O and OP on the time-axis is straightforward.  Similarly expressing O'P as the path of a light 

signal fails, in which case we must identify different geometry avoiding the dependence of O'P on 

O'Q/ . 

 

Consider the diagram in Fig. 6, also with k and K in Sec. 5 (Sect. 1).  Q, Q1, and P( ), P( ) as their 

projections, are fixed points relative to k.  At time , the origin of k and the light signal traveling to 

P( ) leave the origin O of the coordinate system at absolute rest K.  At time  [(r/c)∙cosα], they 

reach, respectively, O’o and P( ).  We lay the bottom diagram in Fig. 4 at O’o on the time-axis O’oP’1 

which means that we refer the motion of k to the coordinate system at absolute rest .  For the 

reason leading to (12), from the right triangle OP’1O’o we have 

 

, , OO’o= .     (13) 

 

By Eqs. (4), (13) we further determine  and  in terms of  and .  We get 

 

, , , .     (14) 
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Figure 6. 

Thus, by passing from Q to the geometrical point Q1, we get rid of the dependence of the abscissa of 

P on the time O’oQ/ .  The abscissa of Q1 relative to K is  times that of Q.  It is  with respect to 
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both k and : Since  is traveled by a light signal in time , the abscissa of Q1 relative to k is also 

traveled in time . 

 

Therefore, a time equation like that given by (11) follows immediately along the  axis, dividing by 

 the equation OO'+O'P( )=OP( ).  So we passed from Eq. (9) to one of type (11), adding 

Newtonian travel times as scalar quantities. 

 

8. COMPLEMENTARY TIME-DEPENDING COORDINATE TRANSFORMATIONS FOR GEOMETRICAL 

POINTS OFF THE OBSERVER’S DIRECTION OF MOTION: GENERAL FORM 

As a straightforward consequence of the graphical addition of travel times as scalar quantities 

(developed in Sec. 7), Eqs. (14) give, for any geometrical point P( ) and physical signal of speed υ, 

the set of equations 

 

, , ,  t= (t-υx/v
2
),     (15) 

 

with β =(1-υ2
/ v 

2
)

-1/2
. 

 

For Eqs. (15) to express a coordinate transformation, we must brake the equivalence of the first and 

the last of them.  To this end, consider the Q’s (implicitly their projections P) in Fig. 6 to move relative 

to the coordinate system k, which is also in uniform translatory motion relative to K.  Identifying P 

with the origin of the coordinate system k, we are in the case pointed out in the last paragraph of 

Sec. 6 (Sect. 1.2).  So, we pass from a description of the motion of Q relative to the inertial coordinate 

system k to one with respect to a coordinate system at absolute rest KA associated to k just as it was 

associated to kA in Sec. 6 (Sect. 1.1).  By a diagram analogous to the last one in Fig. 3 and by the 

additional equation  analogous to that associated to Eqs. (3), we break the equivalence of the 

first and the fourth of Eqs. (15). 

 

Thus, with the additional equation , Eqs. (15) give the general form of the ‘complementary 

time-dependent coordinate transformations’ due to the tracing of the radius vectors of moving 

geometrical points off the common x’, x axis with physical signals.  The term  βx  in Eqs. (15) is the 

Cartesian coordinate of a geometrical point associated to P( ) in consequence of the graphical 

addition of travel times as scalar quantities,  βt is a Newtonian time -that in which the physical signal 

travels the coordinate  βx -, while  is the Cartesian coordinate of another geometrical point -the 

origin of the inertial coordinate system. 

 

9. THE STANDARD LORENTZ TRANSFORMATION AS A COMPLEMENTARY TIME-DEPENDENT 

COORDINATE TRANSFORMATION 

Tracing the radius vectors of moving geometrical points with light signals (as depicted in the 

diagrams in Figs. 5, 6), Eqs. (15), written for v=c, give the standard Lorentz transformation as a 

‘complementary time-dependent coordinate transformation’.  As a ‘complementary time-dependent 

coordinate transformation’ connects finite Cartesian coordinates and Newtonian times, the standard 

Lorentz transformation connects evidently finite Cartesian coordinates1 and Newtonian times ( βx , 

                                                
1
  Our derivation of the Lorentz transformation as a ‘complementary time-dependent coordinate 

transformation’ deny the claim in [6] that the Lorentz transformation would always connect “infinitesimals 

instead of finite” coordinates.  For an observer attached to the origin of S’ (the equivalent of our k) in the 

diagram in [6], and tracing radius vectors by light signals, there is neither the claimed paradox nor the need that the Lorentz 

transformation to connect infinitesimals.   
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 and  βt , respectively) neither spatial and time intervals nor a coordinate ( x ) and a fictitious time 

( t ) multiplied by a factor ( β ) of mysterious origin and physical meaning. 

 

The derivation of the Lorentz transformation as a complementary time-dependent coordinate 

transformation validates our working hypotheses (see Sec. 3). 

 

10. OPERATIONAL DERIVATION OF THE VECTOR LORENTZ TRANSFORMATION 

Consider the diagram in Fig. 7.  The coordinate system k moves rectilinearly with constant speed  

relative to the coordinate system at absolute rest K along the direction .   

P '

K

Q

P 1P

vt *

O

Q 1

O '1

k
r ( c t* )

r (c t* )

r 'r '

c t

O '  

Figure 7. 

A light signal traveling OP in time  is used, just like in Sec. 7 above (O'P' playing the role of time-

axis) to remove the dependence of OP and O'P on  and O'Q/ , respectively.  So we pass from Q 

and O' to Q1 and O'1 with OP1= OP and OO'1 OO'.  From the right triangles O'1Q1P1 and OQP we 

have r'=Q1P1+O'1P1 with Q1P1=  and O'1P1=OP1-OO'1= , that by noting, 

 and  , provides the vector Lorentz transformation as 

 

, .    (16) 

 

From a diagram analogous to that in Fig. 7, describing the rectilinear motion of constant speed  of 

a coordinate system k relative to the coordinate system at absolute rest K, we obtain analogously the 

vector Lorentz transformation 

 

,    (17) 

 

where ,  and . 

The operational derivation of the vector Lorentz transformation validates our operational method 

 

11. OPERATIONAL APPROACH OF THE GROUP PROPERTIES 

The main mathematical requirement for a set of coordinate transformations to form a group is that 

they to accomplish the transitivity property.  This stipulates that, successively performed, any two of 

them engender an equivalent one; i.e. both collinear and non-collinear Lorentz transformations form 

a group.  Proving this by the operational method developed in Chs. 7 to 9 requires tracing of radius 

vectors by light signals.  Note that O'If in Figs. 8 and 9 is the origin of the coordinate system at 

absolute rest KA associated to kA as in Sec. 6 (Sect. 1.1).  Tracing O'IfPIB and O'IfPC in Figs. 8 and 9, 
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respectively, one finds new transformations related to (16) and (17) and similar to them. The light 

signals will leave O'If when O'If and the origin of kB in Fig. 8 (that of k'B in Fig. 9) coincide.  They will 

reach PIB in Fig. 8 (PIf, PC in Fig. 9) simultaneously with the light signal leaving O together with the 

origins of kA and kB, when the origin of kB reaches O'IB in Fig. 8 (O'IB', O'IB in Fig. 9).  As concerns the 

inverse transformation, it is associated with the motion with constant speed  of the origin of K 

from O' to O in Fig. 3 relative to the k now at absolute rest.  It connects coordinates and times 

defining a different event.  This because the coordinate system at absolute rest  associated to the 

moving K by  differs from that associated with the moving k by  [predicted by (25) in 

view of (24) and (3)]. 

 11.1.  For Collinear Lorentz Transformations 

Consider the diagram in Fig. 8 for the collinear Lorentz transformations (16), (17).  At  the 

coinciding origins of kA, kB and a light signal leave the origin O of the coordinate system at absolute 

rest K.  The points O’A, O’B in Fig. 8 are reached by the origins of kA, kB, respectively, at time , when 

the light signal reaches P( ). In accord with Sec. 6 (Sect. 1.1) above, the Lorentz transformations 

(16), (17) are written at the times  and , respectively.  The origin of kA moves from O’IA to O’If in 

the time .  Analogously to the motion of k relative to KA in Sec. 6 (Sect. 1.1), we consider the 

motion of O’IB in relation to O’If.  From Fig. 8 we have R-O’IfO’IB with 

 

O’IfO’IB= , ( ) , 

 

where  is just  in (14), and 

 

 

 

where  is just  in (14). 

 

With  given by (4), , , and  all parallel, the relationships 

 

     (18) 
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Figure 8. 

follow.  From the right triangle O’IB QIB PIB and the right triangle O’IA QIA PIA (QIA PIA=QIB PIB), we get the 

new vector Lorentz transformation 

 

, 
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where  and , which relates radius vectors of geometrical points relative to kB and 

kA.  Thus the transitivity condition is proved for collinear Lorentz transformations.  Therefore, they 

form a group. 

 

So, together with the operational derivation of the vector Lorentz transformation, the proof that 

collinear Lorentz transformations form a group validate our operational method. 

 11.2.   For Non-collinear Lorentz transformations 

Consider the diagram in Fig. 9.  At time  the coordinate systems kA and kB, whose origins coincide 

with that of coordinate system at absolute rest K start moving along non-parallel directions with 

constant velocities  and , respectively.  Also at time 

O
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Figure 9. 

, light signals start traveling towards PA and PB , respectively. 

 

To prove that the resulting non-collinear Lorentz transformations (16), (17) form a group, a light 

signal and a coordinate system parallel to kB must move simultaneously at absolute speeds  and 

 along O'AO'B in the time . 

 

A new Lorentz transformation, in relation with (16) and (17) should follow.  To this end, we further 

consider a coordinate system k’B parallel to kB which covers in the time  a distance equal to 

OO'A+O’AO'B along OPA at a constant velocity .  This coordinate system defines a coordinate 

system k"B, also parallel to kB.  The origin of k"B leaves O'A at time , and, moving with speed 

, reaches O'B at time .  So we pass from the relative speed  to the relative speed 

 by , and from the motion of kB relative to kA to one relative to the 

coordinate system at absolute rest KA, associated to kA by (T-w*vT/c
2
) u  with 

 

 and  . 

 

Using  

 

,        (19) 

 

we have the operational law of addition of non-parallel speeds.2 

                                                
2 

This law has no physical grounding in common with the standard relativistic formula of addition of non-

parallel speeds [7] -which predicted the famous, but contested [8] Thomas precession [9].  For the sake of 

mathematical generality, Thomas missed the physical meaning of the Lorentz transformation by the translation 
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At the times ,  the light signals that leave O simultaneously with kA, kB and k'B reach, 

respectively, PIA and PIf, PIB.  The origins of kA and kB arrive, respectively, at O'IA and O'If, O'IB.  In accord 

with Sec. 6 (Sect. 1.1), O'If is the origin of the coordinate system at absolute rest KA at time .  By 

the above definition of k'B and k"B, the origin of k'B finds at time  at a distance equal to O'IfO'IB from 

O'If along OPIf, namely at O'IB' in   Fig. 9.  The light signals leaving O'If simultaneously with the origins of 

k'B and k"B will travel equal distances along the directions of motion of k'B and k"B, viz. O’IfPIf=O’IfPC.  

Since O’IfPIf is the projection of  onto the direction of , O’IfPC will be the projection of the radius 

vector  of magnitude  that makes with  an angle equal to that  makes with .  From 

O’IfPIf=  and an equation resulting from the first of Eqs. (16), , we 

have  with 

 

.       (20) 

 

By inserting (20), the inverse of the last of Eqs. (16), and Eq. (19) into , we obtain: 

 

 

 

In view of Eqs. (20), also valid for , we have: 

 

O’IBPC= . 

 

Because QIfPIf = QIBPIB = QPC by virtue of QAPA=QBPB, and =|O’IB'QIf|=|O’IBQ| with 

O’IBQ=QPC+O’IBPC, we have QPC=  and 

 

,    (21) 

 

where .  The resulting vector Lorentz transformation (21) proves that the non-

collinear Lorentz transformations satisfy the transitivity property.  Hence they form a group without 

requiring rotations of inertial coordinate systems in this aim. 

 

This result validates the Lorentz transformation itself. 

 

                                                                                                                                                   
he associated to the vector Lorentz transformation [9]. It was under such condition that the usual matrix 

multiplication he used to made no physical sense. 


