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            Article  

Subquantum Dynamics & Wavefunctions 
 

Alexandru C. V. Ceapa* 
 

ABSTRACT 
The undulatory phenomenon that de Broglie associated to the quantum particles seems basic for their 

mathematical description by wavefunctions. The Dirac wavefunctions ψ contains in their structural 

elements information on the constituents of the Dirac particles responsible for, or at least in 

interrelation with, the undulatory phenomenon. 
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31. QUANTUM MECHANICAL RELATIONSHIPS POINTING TO c AS SUBQUANTUM QUANTITY 

 
The Dirac spin operator S=( /2)ΣΣΣΣ gives evidences for c as peripheral speed of the spinning systems of 

subquantum particles by the direct product in the defining relationship [56] ΣΣΣΣ=-(i/2)(ααααxαααα)= ,
0

0

σ
σ

 

and the commutation relations [cαi,Σi]=0 (cαi is the velocity operator, i=1-3): While the defining 

relationship points to a motion of speed c in a plane orthogonal to the spin direction, the 

commutation relations show, according to the quantum mechanical theory of measurement, that 

components of the speed non-parallel to one of the spin can not be measured simultaneously with 

the last.  The validity of our result is supported by that both the Newtonian speed and acceleration as 

ratios of infinitesimal quantities. 

 

 

32. INFORMATION PROVIDED BY THE DIRAC WAVEFUNCTIONS 

 
The undulatory phenomenon that de Broglie associated to the quantum particles seems basic for 

their mathematical description by wavefunctions, the statistical interpretation of the wavefunctions 

and experimental performances otherwise impossible to get.  Therefore, the Dirac wavefunctions ψ 

should contain in their structural elements information on the constituents of the Dirac particles 

responsible for, or at least in interrelation with, the undulatory phenomenon.  We just propose 

searching for such information. 

 

 32.1.  Splitting the Dirac Wavefunctions in Components of Opposite Helicities 

 

The splitting of the Dirac wavefunctions in wavefunctions of another operator is   -by virtue of the 

principle of the physical determination of equations- essential to obtain information on the structure 

of the quantum particles.  That information is to be identified in their elements. 

Focus our attention upon the commutation relation 

 
[HD,h] = 0,         (37) 
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where h is the helicity operator.  Eq. (37) assures the existence of a complete set of eigenstates for 

HD and h.  Although helicity is a good quantum number, Eq. (37) does not specify if the energy 

eigenstates are helicity eigenstates or linear combinations. To discern between the two possibilities 

found on equal footing in the literature, we assume that all Ψ are also helicity eigenstates.  For a 

free particle, Ψ is given by 

 
Ψ=n x column (ψ,kψ) x exp(ipµxµ / ),                (38) 

 
where n is a normalization factor, ψ is as usually a two-component spinor and k is a constant to be 

determined.  The pairs of non-zero values of k that the zero-valued determinants of the systems of 

second order equations in which Dirac equation splits by inserting Ψ deny such Ψ’s. 
Consider further the wavefunctions  

       
Ψ=column (ξ,η) 

 
of the Dirac equation 

 
i ∂oΨ=(1/c)HDΨ,        (39) 

 
where 
 

HD=cαααα⋅p+moc
2β 

 
is the Dirac Hamiltonian, and 

 

αααα= ,
0

0

σ
σ

−  β= ,
0

0

I

I
 

 
are the Dirac 4x4 matrices, in which Eqs. (31) were joined together. 

 
The eigenfunctions of the equation with proper values associated to Eq. (39) are 

 
ψ=column {a,b,[(E+cp3)a+cp-b]/moc2,[cp+a+(E-cp3)b/moc2]}, 

 
where a, b are components of ξ, p±=p1±i p2, and normalization factor was ignored. 
 
By a simple calculation, we get -in accordance with (37)  

ψ=ψ-
h+ψ+

h,  (40) 
 
where 
 

ψ-
h=(1/2p) column{(p-p3)a-p-b,-p+a+(p+p3)b,[(p-p3)a-p-b](E-cp)/ moc

2,[-p+a+(p+p3)b](E-cp)/moc
2}, 

 
ψ+

h=(1/2p) column{(p+p3)a+p-b,p+a+(p-p3)b,[(p+p3)a+p-b](E+cp)/ moc
2,[p+a+(p-p3)b](E+cp)/moc

2} 
 

are eigenfunctions of h, corresponding, respectively, to negative and positive helicities. The result is 

found to be independent of representation.  As the direction of p in space is well-determined, this 

splitting proves that the Dirac wavefunctions actually provide information on the true existence of 



Scientific GOD Journal | July 2010 | Vol. 1 | Issue 5 | pp. 352-357 
Ceapa, A. C. V.  Subquantum Dynamics & Wavefunctions 

ISSN: 2153-831X Scientific GOD Journal 

Published by  Scientific GOD Inc. 

    www.SciGOD.com 

 

354 

something spinning in opposite directions within a Dirac particle.  The result becomes explicit for a 

particle moving along one of the coordinate axes, particularly along the third axis, when the 

eigenfunctions ψ-
h, ψ+

h are eigenfunctions of Σ3. 
Concluding, it is misleading to associate simultaneously to each of the directions of p, and to each 

state of helicity, positive and negative energy solutions of the Dirac equation.  That the physical 

reality determining the Dirac Hamiltonian and wavefunctions consists in the systems of subquantum 

particles inhering in a Dirac particle, is best illustrated by Eq. (40): When written for p(0,0,p), Eq. (40) 

turns into a linear combination of eigenfunctions of Σ3 corresponding to opposite eigenvalues.  
 
  32.2.  Splitting the Dirac Wavefunctions in Wavefunctions of the Velocity Operator 

 
A simple calculation -in accordance with the commutation relation [cαααα⋅p,ΣΣΣΣ⋅p]=0 gives 
 

ψ=ψ-
α+ψ+

α,  (41) 
 
where 

 
ψ-

α=(1/2p) column{(p-p3)a-p-b,-p+a+(p+p3)b,[(p+p3)a+p-b](E+cp)/ moc
2,[p+a+(p- p3)b](E+cp)/moc

2}, 
ψ+

α=(1/2p) column{(p+p3)a+p-b,p+a+(p-p3)b,[(p-p3)a-p-b](E-cp)/moc
2,[-p+a+(p+p3)b](E-cp)/moc

2}, 
 
are eigenfunctions of the operator cαααα⋅p/p, which eigenvalues are opposite speeds along the 

direction of motion.  Since the elements +σσσσ and -σσσσ of αααα act, respectively, upon 4 and 4, and 
 

(σσσσ⋅p/p)ξ+=ξ+ [-(σσσσ⋅p/p)η-=η-], (σσσσ⋅p/p)ξ-=-ξ-, [-(σσσσ⋅p/p)η+=-η+], 

 
the first two elements of ψ+

h (ψ-
h) are identical with the first two elements of ψ+

α (ψ-
α), and the last 

two elements of ψ+
h (ψ-

h) are identical with the last two elements of ψ-
α (ψ+

α).  So that, the splitting 

of the Dirac eigenstates in helicity eigenstates corresponding to opposite speeds by (7) supports the 

understanding of c as a subquantum peripheral speed of the systems spinning oppositely in the 

above semi-classical model of Dirac particle. 

 
 
33. INFORMATION PROVIDED BY THE SPINNING FREQUENCY OPERATOR  

 
The standard way to prove the existence of some physical quantity in quantum mechanics lies in 

constructing an observable that can, at least in principle, be measured.  Accordingly, we define the 

‘frequency’ operator 

 
ω‘ i=P+ωiP++P-ωiP-. 

 
P±=[1±sign(E)]/2 are projectors onto positive and negative energy states, ωi are components of the 

operator [56] ω=-2cγ5p/  and γ5 is the chirality operator.  By the relationships 
 

P±ωiP±=±[(ωrSr)ωi/E]P±, 
 
resulting from a simple but long calculation, we get 

 
ω‘ i=(ωrSr)ωiHD /E2.  (42) 

 
The suitable form of the Dirac Hamiltonian 
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HD=S⋅ωωωω+moc

2β 
 
in terms of ω‘ i is 
 

HD=E2(ω‘ rS’r)/p
2c2, 

 
where 

 
S’i=P+SiP++P-SiP-≡Si, 

 
for massic particles, and 

 
Ho

D=ω‘ r S’r, 
 
for massless particles.  

 

Since 

 
[HD,ω‘ i]=0,  (43) 

 
ω‘ i is a constant of motion.  The eigenvalues of ω‘ i and HD are simultaneously measurable.  Both ωωωω 
and HD are four-dimensional operators.  Their two-dimensional components stand for the two 

coupled, opposite spinning motions in a Dirac particle.  While HD stands for the total energy of the 

two systems as the particle energy, and ΣΣΣΣ is defined by Pauli matrices preceded by the same sign, ωωωω 
stands, by its two-dimensional elements preceded by opposite signs (involved by γ5

), for some 

opposite quantities definitory for the two systems.  So, for states of well-defined energy, the 

eigenvalues of ωi to be taken into account are, unlike those of HD, just those of its two-dimensional 

components.  For a particle at absolute rest of Schrodinger's microscopic momentum po=moc, the 

eigenvalues of ω‘ i are given by (33).  They are also given by (33) for a free particle of linear 

momentum p(0,0,p), when 

 
ω’ i=2p2c2HDΣi/hE2.   (44) 

 
Therefore, the physical quantities associated to the two-dimensional components of ω‘ i are 

frequencies. Their coincidence with the frequencies (33) validates the semi-classical model of Dirac 

particle obtained in Chs. 28, 29 as a quantum model. 

 
Since Eq. (44) was obtained by adding the operators 

 
P±ωP±=±2p2c2ΣP±/hE, 

 
the only energy states Ψ± satisfying the eigenvalue equation of ω‘ i are those also satisfying equation 
hΨ±=±Ψ±.  More generally, by Eqs. (44), the eigenvalues of ω‘ i are simultaneous with those of HD in 

two cases: i) for states which energy and helicity are both either positive or negative, ii) for mixed 

energy states and mixed helicity states. Since the Dirac eigenfunctions are linear combination of 

states of opposite helicities, this means that a state of ‘well-defined’ energy is actually an unbiased 

mixture of sub-states of opposite energies associated to opposite sub-spins.  No evaluation of these 

sub-spins of the systems of subquantum particles is known at this stage of our investigation. The 
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main result is that the particle mass appears for the first time to be the coupling constant of these 

sub-spins. The particle energy appears as their coupling energy. 

In accord with the commutation relations [ω’ i,αi]=0 and [Si,αi]=0, the eigenvalue equations of the 

operators P±αP±=±(cp/E)P±, associate the speeds ±c to these systems.  The Zitterbewegung 

frequencies of the operators αi, Si and ωi between states of identical p but opposite energies [57] 

coincide with the spinning frequencies of the model’s systems.  So Zitterbewegung is the rapid 

motion performed by peripheral subquantum particles about the systems of opposite energies, just 

as it is seen by an observer watching the projections of their speeds onto the coordinate axes. 

 

 

34. SUBQUANTUM DETERMINATION OF DIRAC WAVEFUNCTIONS 

 

We have shown in Sec. 32 that the Dirac wavefunctions actually contain information about the 

subquantum structure of the particles which they describe.  To get further insight into their 

structure, we now relate the Dirac wavefunctions to parameters that could characterize this 

structure by Eqs. (31) in view of Eq. (32).  Concerning a free particle moving along the third axis of 

coordinates, Eqs. (30) reduce to  

 
i (∂3+∂o)ξ=mocη, i (∂3 - ∂o)η=-mocξ,                        (45) 

 
under the action of σ3 on the spinor part of ξ and η. 
 
The analogous Eqs. (31) and (32) enable us to describe the weakly coupled systems of subquantum 

particles of a Dirac particle by  

 
ξ = (ρR)1/2exp(iθR), η = (ρL)1/2exp(iθL),                 (46) 

 
where as functions of space and time the densities ρj and the phases θj (j=L,R) determine by their 

variation the motion of the subquantum particles.  Thus, by inserting (46) in Eqs. (45), and collecting 

the resulting real and imaginary parts, we get 

 
∂oρj = εj[∂3ρj+(2Kκ/hc)sinθ], ∂oθj= εj∂3θj-(Kκ/hcρj)cosθ, 

 
where εj=+1 for j=L, εj=-1 for j=R, κ=(ρLρR)1/2 and θ=θL-θR is the relative phase. The stationary 

state defined by ρL=ρR is governed by the equations 
 

-∂oρL = ∂oρR, ∂oθ = ∂3(θL+ θR). 
 
The subquantum determination of the wavefunctions by (46) was lost by their normalization.   

 
 
35. PHOTON’S MODEL 

 

The Hamiltonian [58] 

 
HPh= c⋅rot = ωiSi, 

 
where rot stands for rotor, ωi=cpi/ , Si= si and si are the spin matrices 
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is the analogous of H

o

D.  The writing of HPh as a rotor, and of its wavefunctions as a superposition of 

wavefunctions of opposite polarizations, suggest that any photon consists of two physical entities 

spinning in opposite directions.  The e
+
-e

-
 annihilation suggests that these entities are also systems of 

subquantum particles spinning in opposite directions. 

 
 

36. SUGGESTED MODEL OF SPIN-0 MESON 

 
In view of the physical meaning of Zitterbewegung deduced in Sec. 33, the Zitterbewegung provided 

by the two-dimensional matrices of Sakata-Taketani equation [59] describing spin-zero mesons 

suggests the existence of oppositely spinning systems of subquantum particles also within these 

'elementary' particles. 


